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Abstract

An adaptive harmonic balance approach is developed and applied to a supersonic/subsonic diverging nozzle subject

to unsteady periodic outflow conditions. The adaptive method minimizes the computational work required to obtain

the harmonic balance solution by augmenting the frequency content in each cell as required to capture the local flow

physics. Augmentation automatically adjusts with grid density, resulting in lower frequency content on coarse grids.

The new adaptive harmonic balance method produces solutions equivalent to a non-adapted harmonic balance solu-

tions, but with up to an 86% reduction in computational effort.

� 2003 Published by Elsevier B.V.
1. Introduction

High-fidelity numerical simulations of fluid flow through transonic turbomachinery are of considerable

interest to designers of compressors and turbines in modern jet engines. Solutions can be obtained with

conventional time-accurate computational fluid dynamic (CFD) codes, but the considerable time required
to generate these solutions limits their utility to the designer. For the class of problems where the flow can

be assumed to be fully developed and periodic in time, such as flow past a rotor with oscillating blades, or

flow through a rotor-stator, time-accurate calculations can be particularly inefficient. It is usually necessary

to step through many disturbance periods before a fully developed solution is reached. To achieve shorter
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computation times for this class of problem, CFD techniques have been developed that take advantage of

the time-periodic nature of the flow. These include the time-linearization technique [1–4], the time-averaged

nonlinear harmonic technique [5–7], and the harmonic balance technique [8–13].

All three techniques are closely related in that they all assume a harmonic form for the unsteady flow,

which allows one to recast the unsteady problem as a steady-state problem, and thus employ steady-state

convergence acceleration techniques to reduce computation time. The time-linearization technique assumes

a small-disturbance (i.e., infinitesimal amplitude) form for the unsteadiness, and incorporates no unsteady

nonlinearities. The time-averaged nonlinear harmonic technique also assumes a small perturbation form of
the governing equations, but applies time-averaging to produce a nonlinear harmonic form that is equiv-

alent to a first-order harmonic balance. Both approaches typically solve for one harmonic at a time, and

thus do not include nonlinear harmonic coupling effects. The harmonic balance method, on the other hand,

eliminates the small disturbance restriction and, by solving a set of nonlinear equations for several har-

monics simultaneously, captures coupled nonlinear effects. This makes the harmonic balance technique

uniquely suited for calculating nonlinear periodic flow through transonic turbomachinery. Early tests show

that the harmonic balance approach can produce useful results with a small number of frequencies in an

order of magnitude less time than time-accurate calculations [8,10].
The fidelity of a harmonic balance solution is dependent on grid density, on the number of harmonics

retained, and on the flow being modeled. On a given grid, a flow that is smoothly unsteady (i.e., no moving

discontinuities) will require fewer harmonics to achieve a desired modeling accuracy than a flow containing

a moving shock. Because the computational cost increases with each harmonic included in the harmonic

balance solution approach, it is preferable to use the least number of harmonics needed for a given problem

to achieve a desired level of accuracy.

In a typical unsteady transonic turbomachinery problem, the nature of the flow can vary significantly

throughout the domain of interest. Existing harmonic balance implementations [8–10] solve for a constant
number of harmonics over the entire computational domain, so problems containing both smooth and

discontinuous unsteadiness require a compromise between reduced runtime (fewer harmonics), and fidelity

in the regions of strong nonlinearity. In this paper, it is shown that compromise is obviated through the use

of an adaptive harmonic balance technique whereby the number of Fourier frequencies at each grid point is

varied in a prescribed manner to efficiently capture the local flow. The technique is demonstrated with the

solution of the quasi-one-dimensional inviscid Euler flow equations applied to a supersonic/subsonic

diverging nozzle with periodic unsteady outflow conditions.
2. Split-domain harmonic balance form of the governing equations

The quasi-1D Euler equations [14] in strong conservation vector form are given by

oQ

ot
þ oF

ox
þH ¼ 0; ð1Þ

where

Q ¼ A
q
qu
Et

24 35; F ¼ A
qu

qu2 þ p
ðEt þ pÞu

24 35; H ¼
0

�p oA
ox

0

24 35: ð2Þ

In Eq. (2), A is the cross-sectional area of the nozzle, and q, u, Et, and p are density, velocity, total energy,

and pressure, respectively. The perfect gas relation relates pressure to the conservative variables, and the

assumption of constant ratio of specific heats closes the governing flow equations.
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Eq. (1) can be transformed into a split-domain harmonic balance form [12]. To simplify the discussion,

this transformation is presented for a homogeneous scalar conservation equation of the form

on
ot

þ oUðnÞ
ox

¼ 0: ð3Þ

The harmonic balance method is based on the assumption that the dependent variable, nðx; tÞ, can be

approximated by a truncated Fourier series:

nðx; tÞ �
XN
n¼�N

cnðxÞeinxt: ð4Þ

In this series, N is the number of positive and negative frequencies in the truncated Fourier series, and x is

the fundamental radian frequency of the series, equal to 2p=P , where P is the time for one period of os-

cillation of the physical system. The complex coefficients, cn, are functions of the spatial variable only, while
the exponentials are functions of time. Substituting Eq. (4) into the time derivative term of Eq. (3) yields

on
ot

�
XN
n¼�N

inxcn einxt: ð5Þ

A similar substitution is performed for the spatial derivative term of Eq. (3). In this case, substitution

requires the evaluation of the flux, U, with the approximating series as an argument. Upon evaluation, the
resulting flux is algebraically simplified and terms of like frequency are collected, resulting in an expression

of the form

UðnÞ �
XM
n¼�M

/n e
inxt; ð6Þ

where /n contains the sum of all coefficients of the exponential einxt. If the evaluation of U involves

products or integer powers of the dependent variable n, then M will be greater than N . As part of the

harmonic balance approximation, exponential terms with frequency greater than �Nx are discarded,

leaving only terms with frequencies present in the approximating series

UðnÞ �
XN
n¼�N

/n e
inxt: ð7Þ

Substitution of Eqs. (5) and (7) into Eq. (3) and collection of terms with like exponents yields the series

approximation form of the conservation equationXN
n¼�N

inxcn

�
þ d/n

dx

�
einxt ¼ 0: ð8Þ

At this point, the harmonic terms are required to balance across the equality, i.e., each frequency is required

to satisfy equality independently of the other frequencies. Since the right-hand side of Eq. (8) is identically

zero, each of the terms in the summation on the left-hand side must be equal to zero, i.e.,

inxcn

�
þ d/n

dx

�
einxt ¼ 0; �N 6 n6N : ð9Þ

For each of the 2N þ 1 complex equations represented by Eq. (9) to hold for all time, the terms inside the

square brackets must be identically equal to zero. Dropping the exponential terms leaves a system of 2N þ 1
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coupled ordinary differential equations for 2N þ 1 complex coefficients. This system can be further sim-

plified because the dependent variable, nðx; tÞ, is real and periodic. The negative frequency Fourier coef-

ficients are thus the complex conjugates of the corresponding positive frequency coefficients, i.e., c�n ¼ cn.
Furthermore, since the zero-frequency term c0 must be real, the total number of unknowns is still 2N þ 1:

the real and imaginary parts of N positive-frequency coefficients, plus the real zero-frequency coefficient.

Since the coefficients of the negative frequencies are not independent, the corresponding equations need not

be solved. Keeping just the positive frequency equations and eliminating the exponential terms, Eq. (9)

reduces to

inxcn þ
d/n

dx
¼ 0; 06 n6N ð10Þ

or in vector form,

dÛUðn̂nÞ
dx

þ ŜSðn̂nÞ ¼ 0 ð11Þ

with

n̂n ¼

c0
c1
..
.

cN

26664
37775; ŜSðn̂nÞ ¼

0

ixc1
..
.

iNxcN

26664
37775; ÛUðn̂nÞ ¼

/0

/1

..

.

/N

26664
37775: ð12Þ

To solve Eq. (11), a pseudo-time derivative of the Fourier coefficient vector, n̂n, can be added:

on̂n
os

þ oÛUðn̂nÞ
ox

þ ŜSðn̂nÞ ¼ 0: ð13Þ

The solution is converged to steady state with a numerical time-marching scheme, at which time the

pseudo-time derivative vanishes, and Eq. (11) is recovered.

Numerical stability considerations require a reduced time step when solving Eq. (13) for large N [9,12].

To improve the stability characteristics of the numerical solution, Eq. (13) can be split into a homogeneous

partial differential equation, and an ordinary differential equation

on̂n1
os

þ oÛUðn̂n1Þ
ox

¼ 0; ð14aÞ
dn̂n2
ds

þ ŜSðn̂n2Þ ¼ 0: ð14bÞ

An approximate solution to Eq. (13) is obtained by sequentially solving Eqs. (14a) and (14b) using the
solution from one as the initial condition for the other. For example, one can solve Eq. (14a) for n̂n1ðx; sÞ
subject to the initial condition n̂n1ðx; 0Þ ¼ n̂nðx; 0Þ, the initial condition for Eq. (13). The approximate solution

is then obtained by solving Eq. (14b) for n̂n2, with the initial condition n̂n2ð0Þ ¼ n̂n1ðx; sÞ. When a time

marching numerical approach is employed, this sequential solution approach is applied every time step.

Different numerical approaches can be used for each equation. The stability characteristics of the overall

solution are determined by the stability of the method applied to each of Eqs. (14a) and (14b) individually

[15,16]. By choosing appropriate discretizations, the large N time step restriction is greatly reduced or

eliminated.
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As an alternative to the simple splitting approach described above, an approximate numerical solution

can also be obtained using a Strang symmetric splitting approach [15–18]. Given difference operators MDs

and LDs that are second-order accurate for Eqs. (14a) and (14b), respectively, then the composite operator

LDs=2MDsLDs=2 is second-order accurate for Eq. (13) [15]. In contrast, the simple splitting approach results

in overall first-order accuracy.

For nonlinear problems, operator splitting introduces an error that is dependent on the integration time

step size [18]. In theory, the operators M and L could be based on either implicit or explicit temporal

discretizations. For explicit schemes, the maximum stable time step is sufficiently small that splitting error is
unlikely to be significant. The effect of splitting error on solutions where larger (implicit) time steps are

taken has not been investigated.

Evaluating the harmonic balance flux vector, ÛU, can be computationally expensive, requiring between N 3

and N 4 complex operations per evaluation. Considerable computational savings can be gained by trans-

forming Eq. (14a) to the time domain [8,10,12]. Given the vector of Fourier coefficients n̂n1, and a discrete

Fourier transform (DFT) operator, F, that produces positive-frequency Fourier coefficients from a set of

real numbers, define n such that

n̂n1 ¼ Fn ð15aÞ

or

n ¼ F�1n̂n1: ð15bÞ

The vector n is a real vector of length 2N þ 1 that contains values of the dependent variable, nðx; tÞ, sampled
at times t ¼ ð0;Dt; 2Dt; . . . ; 2NDtÞ, with Dt ¼ 2p=ðxð2N þ 1ÞÞ, the period of oscillation divided by the

number of samples. A similar relationship is assumed for the flux vector, ÛU and its inverse DFT, U [8,10].

Given these relationships, Eq. (14a) can be transformed to the time domain, greatly simplifying its

solution. First, the harmonic balance flux term is approximated by

ÛUðn̂n1Þ � FUðF�1n̂n1Þ ¼ FUðnÞ; ð16Þ

where the flux function U is just the original flux function U acting on each sampled value in n.
Substituting Eqs. (15a) and (16) into Eq. (14a) gives

oðFnÞ
os

þF
oðUðnÞÞ

ox
¼ 0: ð17Þ

Applying the inverse transform F�1 to Eq. (17) yields the time-domain form of Eq. (14a):

oðnÞ
os

þ oðUðnÞÞ
ox

¼ 0: ð18Þ

Eq. (18) is similar to Eq. (3), except that integration is performed in pseudo-time, and the dependent

variable is a vector of time-sampled dependent variable values rather than a single scalar. Eqs. (14b) and

(18) are designated the split-domain harmonic balance form of Eq. (3). Including the discrete Fourier

transforms, the solution operator for these equations becomes LDs=2FMDsF
�1LDs=2, where MDs is a

second-order difference operator for Eq. (18).

The split-domain harmonic balance form of Eq. (1) is obtained in a similar manner, and is given by

oQ

os
þ oF

ox
þH ¼ 0; ð19aÞ
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oQ̂Q

os
þ ŜS ¼ 0: ð19bÞ

The dependent variable in Eq. (19a) is Q, which consists of the 2N þ 1 time samples of the quasi-1D de-
pendent variable Q. The vectors F and H are the corresponding flux and quasi-1D source vectors. The

dependent variable in Eq. (19b), Q̂Q, is formed by concatenating the DFTs of the sampled conserved

variables, and the vector ŜS is the corresponding harmonic balance source term.

The split-domain harmonic balance solution approach has been successfully applied to a variety of test

cases [12,13], requiring a broad range of Fourier frequencies, from less than 10 to more than 80. The number

of frequencies required for a given solution fidelity depends on several factors, including the nature of the

flow field (e.g., the presence or absence of moving shocks), the grid density, and the fundamental frequency

of the unsteadiness. As a general rule, flows with strong moving shocks require more frequencies. For a given
shock structure, flows with a lower fundamental frequency require more total frequencies than flows with a

higher fundamental frequency. Finally, because high-frequency solutions require the support of a fine

computational grid, solutions on coarse grids require fewer frequencies than solutions on fine grids.
3. Adaptive split-domain solver

A new CFD solver incorporating the adaptive split-domain harmonic balance approach of Maple et al.
[13] was written to solve Eqs. (19a) and (19b). Eq. (19a) was discretized with a Jameson, Schmidt, Turkel

(JST)-type cell-centered finite volume scheme [19], resulting in second-order spatial accuracy. The quasi-1D

source term was incorporated into the flux balance. To avoid oscillations at flow discontinuities, modified

JST artificial dissipation [19,20] was used in conjunction with globally applied second-order dissipation.

The global dissipation term was not strictly required, but was included in some solutions to remove small

oscillations near shocks that were not completely eliminated by the JST dissipation terms.

The split-domain harmonic balance solution was advanced in pseudo-time by integrating Eq. (19b)

forward one-half pseudo-time step, transforming the intermediate solution to the time domain, integrating
Eq. (19a) for one full pseudo-time step and finally transforming the result back to the frequency domain

where Eq. (19b) was integrated another one-half pseudo-time step. Pseudo-time integration for both Eqs.

(19a) and (19b) was accomplished with a three-stage Runge–Kutta scheme with good high-frequency

smoothing properties and minimal storage requirements [21]. Local time stepping was employed to ac-

celerate convergence. The time step in each cell was determined by selecting the smallest maximum step

across all computed samples. The maximum stable CFL for the solver was 1.7.

Boundary conditions for the split-domain approach can be applied in either the frequency domain or the

time domain. In the current implementation, standard characteristic variable steady-state boundary con-
ditions were applied in the time domain. The subsonic nozzle outflow boundary condition was developed in

[14].

3.1. Frequency augmentation

The adaptive harmonic balance method minimizes the computational cost of the basic harmonic balance

solution by automatically adjusting, on a cell-by-cell basis, the number of Fourier frequencies included in

the solution. This is accomplished by means of frequency augmentation. With this approach, the solution is

started with a user-specified minimum initial number of frequencies. As the solution develops, frequencies

are added in fixed increments to individual grid points until a final frequency distribution and solution are

obtained. The final solution contains the minimum number of frequencies in each cell that efficiently and

robustly model the local flow.
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The decision to augment frequencies at a given point is made by examining the fraction of spectral

energy contained in the highest computed Fourier frequency, defined as

EN ¼ jCN j2PN
n¼0 jCnj2

; ð20Þ

where all operations are performed element-wise. The elements of EN are spatially smoothed (in this case

with a 5-point arithmetic average) and then compared to a threshold value, Ethresh. When any element

exceeds the threshold, additional frequencies are incorporated into the solution at that cell. Fourier

coefficients for the new frequencies are initialized to zero. The threshold, which is generally greater than

5.0e) 8, is selected to achieve a desired solution fidelity.
Threshold-based augmentation was supplemented by fringe augmentation. The purpose of fringe aug-

mentation was to increase the size of a threshold-augmented region. In cases with very rapid transitions

between smooth and discontinuous flow, the location of the transitions can change as frequencies are added

and the solution is refined. In those situations, it is sometimes necessary to augment a small fringe of cells

adjacent to threshold-identified cells in order to allow the transition to shift in the direction of lower

frequency content.

Once a cell was identified for augmentation, its maximum Fourier frequency was increased by a pre-

determined increment, chosen to minimize computational cost. The cost of a solution is composed mainly
of two components – the cost associated with solving the time-domain equations (Eq. (19a)), and the cost of

performing the necessary Fourier transforms. The cost of solving the time-domain equations increases

linearly with N , and there is no performance advantage favoring any particular increment, so long as the

increment is relatively small. The cost of the Fourier transform varies with M , the number of terms being

transformed, from order M log2ðMÞ for M a power of 2, to M2 for M prime. Because the split-domain

harmonic balance method is based on a set ofM ¼ 2N þ 1 real numbers, the ideal asymptotic complexity of

M log2ðMÞ is never attained. However, modern FFT algorithms such as those implemented in the Fastest

Fourier Transform in the West (FFTW) library used in this effort yield nearly as good performance if the
number of terms can be factored by powers of small prime numbers, i.e., 2N þ 1 ¼ 2a3b5c7d11e for some

positive integers a, b, c, d, and e [22]. Candidate frequency augmentation increments were selected by

testing the solver (which incorporated FFTW library calls) for various N and identifying those N that

minimized overall compute time.

Like the augmentation increment, the timing of frequency adaptation was based on run-time perfor-

mance considerations. A frequency augmentation approach is most effective when it is based on solutions

that are representative of the final solution. If adaptation is attempted too early in the solution process,

unnecessary frequencies can be added based on transient flow structures that are not present in the final
solution. On the other hand, if the solution is allowed to develop too long before adaptation is attempted,

compute times can increase. The goal of adaptation scheduling is to adapt the solution at times that yield

the best performance.

In the current work, a dual-trigger adaptation scheduling approach was employed. The primary trigger

was based on a measure of the flow development, as given by a modified L2 norm of the change in the

solution during one iteration. The L2 norm, or residual, was defined as

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPni
i¼1ðDQ̂Qi �

gDQ̂QiDQ̂QiÞ
ni

s
; ð21Þ

where, ni is the number of cells in the computational grid, DQ̂Q is the change in the solution vector in one

iteration, and the over-tilde (~) indicates complex conjugation. Adaptation was triggered when log10ðRÞ
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dropped by a user-specified amount. The secondary trigger was based on the number of iterations com-

pleted. Iteration-based scheduling served as a backup to residual-based scheduling in the rare cases where

convergence stalled and the specified residual drop was not achieved.

Both the residual drop and iteration count are measured relative to a reference residual and iteration

number. The initial reference values are set after the first iteration of the solution. The reference values are

then reset whenever the solution is adapted. Adaptation trigger values for the first and subsequent adap-

tations are different. The initial trigger values are set to allow time for the solution to develop from a poor

initial guess. Typical values for the initial residual-based trigger are 0.25 for supersonic flows and 2.25 for
subsonic flows. Subsequent residual trigger values of 0.0 (supersonic) and 0.2 (subsonic) remove errors

introduced by frequency augmentation and, in the subsonic case, further refine the solution a small amount

between adaptations. Values for the iteration-based triggers are set such that the desired residual drop

could reasonably be achieved if the solution converged normally. For a supersonic problem, values of order

100 (initial) and 25 (subsequent) are typical, while for a subsonic problem, values of order 10,000 and 2000

are typical.

3.2. Sample interpolation

Discretization of Eq. (19a) requires the addition and subtraction of the vectors Q (and F) within a

discretization stencil. This presents a problem when cells in the discretization stencil have different sample

rates. Not only do the vectors have different numbers of elements, but those elements correspond to the
state of the flow at different points in time. To resolve this problem, cell quantities must be resampled so

that the sample rate is consistent across the discretization stencil.

Two different resampling methods were implemented: truncation/zero-padding in the frequency domain

and linear interpolation in the time domain. With the first method, a time-domain vector is down-sampled

by taking its Fourier transform, truncating the results, and transforming the truncated Fourier coefficient

vector back to the time domain. Upsampling is achieved in a similar manner, except that the Fourier

coefficient vector is padded with new zero-valued high-frequency coefficients rather than being truncated.

When the results are used in a linear operation such as addition or subtraction, the approach is equivalent
to performing the same linear operation directly in the frequency domain.

One drawback with frequency-domain truncation/zero-padding is that the interpolated values are not

bounded by the original data. When sample rates are very small, interpolation sometimes results in

non-physical values.

When non-physical interpolation occurred, linear interpolation in the time-domain was applied. With

the linear interpolation method, conservative variables were obtained at the required sample times by

linearly interpolating the calculated values. Besides guaranteeing that the interpolated values were bounded

by the computed values, this approach had the advantage that it was applied entirely in the time domain,
and did not require any additional Fourier transforms.

Despite the higher computational cost and potential non-physical interpolations, frequency-domain

truncation/zero-padding was selected as the primary resampling method. This choice was based on the

quality of the solution computed at sample rate transitions. The superiority of the frequency-domain

method over linear interpolation is illustrated in Fig. 1. This figure contains plots of contours of constant

Fourier coefficient magnitude for both types of interpolation at a transition from 7 frequencies (15 samples/

period) to 16 frequencies (33 samples/period). Also appearing in the plots as dashed lines are coefficient

magnitude contours for a solution with a constant 16 frequencies. The frequency-domain truncation/zero-
padded solution is much smoother and more closely matches the constant-sample-rate results than the

linearly interpolated solution.

In order to achieve a smooth solution at frequency transitions, it is necessary to resample the transition

boundaries at every Runge–Kutta (RK) integration stage. Freezing the resampled values at the first
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from 7 to 16 frequencies with contours from a constant 16 frequency solution.
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integration stage results in discontinuities at the transition point, even when both sides of the transition

have the same number of frequencies and no interpolation is required.

As a consequence of the need to resample the transition boundaries at each integration stage, the pre-

viously uncoupled system of equations represented by Eq. (19a) became effectively coupled through the

resampling operation. This made it necessary to store intermediate solutions for all of the equations in the

system, significantly increasing the storage requirements of the solver. For this reason, it was important that

the adaptive split-domain harmonic balance method be implemented with a numerical integration scheme

with low storage requirements.
Because the adaptive solution approach presented above is primarily concerned with individual cell

properties, extension to multiple dimensions is straightforward. In addition, the adaptive solution approach

presented here is fully compatible with Full Approximation Storage (FAS) multigrid convergence accel-

eration [23], though it is not employed in this effort. Multigrid efficiency comparable to that of a non-

harmonic-balance steady-state problem with similar geometry and flow features can be achieved.
4. Test configurations

The quasi-1D adaptive split-domain harmonic balance solver was applied to the problem of flow

through a diverging nozzle with constant supersonic inflow and unsteady subsonic outflow (Fig. 2).
A = 1.398 + 0.347 tanh(0.8 x  4.0)

Inflow

Supersonic

Moving Shock

Unsteady

Subsonic 

Outflow

10

Fig. 2. Unsteady diverging nozzle configuration.
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A common steady-state quasi-1D nozzle test case [24] was modified to generate an unsteady flowfield.

Assumed conditions at the inlet were: Mach number¼ 1.5, density¼ 0.002241 slugs/ft3, pressure¼ 2000

lbf=ft
2, and temperature¼ 520R. Unsteadiness was introduced by adding a sinusoidal variation to the exit

density:

q ¼ 0:003954þ 0:0001 sinðxtÞ slugs=ft3: ð22Þ

For computation, all properties were non-dimensionalized by the inlet values.

Without the unsteady term in the exit density, these boundary conditions result in a flow field with a

normal shock near the midpoint of the nozzle and subsonic exit flow [24]. With the addition of the specified

unsteadiness at the exit, the flow behind the shock becomes continuously unsteady, but remains subsonic.

The location of the shock oscillates about its steady-state location, while the supersonic flow ahead of the
upstream limit of shock motion is not affected and remains steady.

The unsteady amplitude was selected by first finding the range of constant densities for which a steady-

state solution could be obtained using the initial conditions described below. The amplitude was set to the

largest value that produced upper and lower extremes within that range. A reduced disturbance frequency

x ¼ 0:125 (based on the inlet velocity and inlet nozzle height) was selected to maximize the extent of shock

motion and produce multiple frequencies in the subsonic flow downstream of the moving shock. Higher

disturbance frequencies produced a more complex subsonic flow, but resulted in a restricted range of shock

motion. Lower disturbance frequencies resulted in essentially the same range of shock motion, but
produced subsonic flow with lower frequency content.

Flow solutions were obtained for three computational grids with densities of 256, 512, and 1024 cells,

respectively. A uniform cell size was maintained in each grid. Solutions were initialized to inlet conditions

over the first 28% of the grids. Over the remainder of the grids, density and total energy were initialized to

inlet conditions, while velocity was initialized to 34% of inlet velocity. Adapted harmonic balance solutions

to the unsteady problem were computed for six augmentation thresholds from 5.0e) 2 to 5.0e) 7, in order-

of-magnitude increments. In addition, one steady-state (zero-frequency) solution was computed on each

grid to validate the basic solver.
Augmentation increments available to the adaptation algorithm were specified in terms of candidate

numbers of frequencies that could be included in the solution for a given cell. The available candidates are

listed in Table 1. Since the flow in much of the grid was steady-state, each of the solutions was begun with

zero frequencies. The unsteady flow downstream of the shock was smoothly varying, and thus had low

frequency content, so all of the lower-frequency candidates were included. Finally, higher frequency can-

didates in evenly spaced increments were included to allow refinement of the moving shock region. All of

these candidates locally minimize run time as discussed above.

The initial adaptation triggers were set to 2.6 (residual drop) and 7000 (iterations). After the initial
adaptation, trigger values of 0.1 and 1200 were used. Fringe augmentation widths of 4, 8, and 25 were

required for the 256-, 512-, and 1024-cell grids, respectively.

All solutions except one were computed with a fixed CFL of 1.7. The one exception was the solution on

the 1024-cell grid with augmentation threshold of 5.0e) 4. For this one case, a transient in the shock region

made it necessary to decrease the CFL in cells with high frequency content in order to achieve a converged
Table 1

Candidate numbers of frequencies available to the adaptive harmonic balance solver for the unsteady nozzle test case

0 1 2 3 4 5

6 7 10 13 16 19

22 24 27 32 37 42
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steady-state solution. All harmonic balance solutions were converged to a residual below 1.0e) 6, a drop of

approximately 4.6–4.9 orders of magnitude.
5. Results

5.1. Comparison with exact solutions

The quasi-1D harmonic balance solver was validated by calculating zero-frequency (steady-state) so-
lutions for each grid density and comparing results with an exact solution. The exact solution for a di-

verging nozzle with constant outflow properties is easily obtained from the isentropic flow equations and

Rankine–Hugoniot normal shock relations [24,25].

All solutions showed good agreement with the theoretical solution, as illustrated for the 1024-cell grid in

Fig. 3. The root-mean-square (RMS) percent error was 4.9%, 3.5%, and 2.5% for the 256-, 512-, and 1024-

cell solutions, respectively. Most of the observed error was attributed to smearing of the normal shock

across several cells. Excluding the error in the shock region reduced the RMS percent error for the coarse,

medium, and fine grids to 0.31%, 0.16%, and 0.08%, respectively.
Validation of the unsteady harmonic balance solutions was primarily achieved through comparison with

conventional time-accurate calculations. A comparison of time-average static pressure for the adapted

harmonic balance and time-accurate calculations on the 1024-cell grid is shown in Fig. 3. Other compar-

isons are discussed below. One quantity, the time-average mass flux, was readily validated against an

analytic solution. Conservation of mass requires that

ðquÞx
ðquÞinlet

¼ Ainlet
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Fig. 3. Calculated zero-frequency (steady-state) and theoretical exact pressures for 1024-cell grid diverging nozzle, with the computed

time-averaged pressure for time-accurate and harmonic balance calculations.
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where (quÞx is the time-average mass flux at location x. In Fig. 4, the adaptive harmonic balance time-

average mass flux (the zero-frequency Fourier coefficient of the qu term) for the 256- and 1024-cell grids is

plotted with the theoretical value. The harmonic balance solutions show good agreement with the theo-

retical values everywhere except in the region of shock motion, where the effect of shock smearing intro-

duces errors. The error distribution of the time-average momentum for the 256, 512, and 1024-cell

harmonic balance calculations is shown in Fig. 5. In all three cases, the error peaks at the edges of the
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region of shock motion, with the maximum error ranging from 3.5% for the 256-cell solution to 1.5% for

the 1024-cell solution. Errors of these magnitudes are expected for a diverging nozzle solution (cf. [24]).

5.2. Unsteady nozzle solutions

A typical growth history of an adapted frequency distribution is shown in Fig. 6. The figure shows the

adaptation history for a solution on the finest grid with an augmentation threshold of 5.0e) 7. Each frame

shows the frequency distribution after frequency augmentation at the indicated iteration, from the first

adaptation at iteration 4725, to the final adaptation at iteration 16,990. As can be seen in the figure, the

frequency distribution had stabilized outside the shock region by the fourth adaptation. Subsequent ad-

aptations added frequencies only to the region of shock motion.

In Fig. 7, pressure distributions for this same adapted solution are shown at 10 snapshots in time
spanning one period of the flow oscillation. Also shown are snapshots from a time-accurate calculation on

the same computational grid, along with the final frequency distribution envelope. This figure illustrates

how the number of frequencies included in the adapted solution varies with local flow behavior. Fig. 7 also

illustrates the ability of the adapted harmonic balance solution to sharply capture the oscillating normal

shock and agree with the time-accurate solution at all points in time. The spatially varying frequency

content produced no visible artifacts in the computed solution.

A quantitative assessment of the adapted harmonic balance solution was obtained by averaging the

RMS of the percent differences between the adapted solution and a time-accurate solution for each of the 10
samples in Fig. 7. The average RMS difference was found to be 0.14%. A similar calculation was performed

for solutions obtained on all three grids with all six augmentation thresholds. The results are plotted in

Fig. 8. While there were some differences across grids in the average RMS values for large augmentation

thresholds, the solutions on all three grids converged to provide nearly identical agreement at a threshold of

5.0e) 7.

Nearly all of the difference between the time-accurate solutions and adapted harmonic balance solutions

with high augmentation thresholds was in the region of the moving shock. Fig. 9 illustrates the development

of this region with decreases in augmentation threshold. This figure shows solutions in the region of shock
motion for the 256-cell and 1024-cell grids at a time corresponding to 1/4 of the oscillation period. For a

given augmentation threshold, the solutions on both grids had similar properties. At a threshold of 5.0e) 2,

the shock was poorly defined, and there was significant overshoot behind the shock. At a threshold of

5.0e) 4, the shock was well defined, but there was ringing before and after the shock. For a threshold of

5.0e) 6, the shock was well defined on both grids, and most of the ringing around the shock was removed.

While the defects at each threshold level were more pronounced on the finer grid due to higher grid res-

olution and frequency content, the basic form of the defects was the same on both grids.

The frequency distributions for the solutions in Fig. 9 are shown in Fig. 10. These plots illustrate the
relative number of frequencies required to achieve each level of solution fidelity. They also illustrate the

tendency of the adapted frequency distribution to automatically adjust for grid density. Though a given

threshold achieved a qualitatively similar solution on each grid, the number of frequencies included in the

shock region on the fine grid was significantly higher than the number included on the coarse grid.

Fig. 10 also includes the final frequency distribution for solutions with a threshold of 5.0e) 7. As can be

seen, a large increase in frequency content was needed to achieve a small improvement in the solution as

measured by the RMS difference with the time-accurate solution (Fig. 8). The variation in maximum

frequency content with grid density and augmentation threshold is shown for all grids and thresholds in
Fig. 11.

While the maximum frequency content determines the fidelity of each solution, the average frequency

content determines the cost of each solution. The average frequency content for each adapted solution is

shown in Fig. 12.



Fig. 6. Evolution of the adapted frequency distribution, 1024 cells, augmentation threshold 5.0e) 7.
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Fig. 7. Comparison of adaptive harmonic balance (symbols) and time-accurate solutions (solid) at 10 points in time spanning one

period of oscillation, with adapted frequency distribution (heavy solid).
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Since the discontinuous flow was limited to a small portion of the computational domain, the overall

average frequency content remained small for all augmentation thresholds. On the finest grid, the maximum

frequency content grew by 35 frequencies at the smallest threshold, while the average frequency content

grew by approximately 4.5 frequencies
Low average frequency content translated into reduced compute times, as shown in Fig. 13. A com-

parison of Figs. 12 and 13 shows that the compute time grew more slowly than the average frequency

content. This was due to the inherent efficiency of resolving the flow features that are slowest to converge

during the early stages of the adaptive solution when the frequency content was low. On the coarsest grid,
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the compute time for the lowest augmentation threshold is less than twice that of the highest threshold. On

the finest grid, the compute time grew only 2.3 times from the highest threshold to the lowest.

To determine the efficiency of the adaptive harmonic balance approach relative to non-adapted (fixed-

frequency) harmonic balance, each of the harmonic balance solutions was recomputed with a fixed number

of frequencies. The maximum frequency content from each of the adapted solutions was used to generate

the fixed-frequency solutions, ensuring that both solutions maintained the same fidelity. The efficiency of
the adaptive method was examined by comparing problem sizes and compute times.

The problem size for the fixed-frequency calculation is the number of frequencies included in the so-

lution. The equivalent problem size for the adapted calculation is the average frequency content. The

difference between these two quantities is shown in Fig. 14 as a percent reduction.

For the largest augmentation threshold, the reduction in problem size was approximately 45% for all

grid densities, which represents a significant reduction, considering that the average number of frequencies
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in each solution was approximately one (the minimum possible number of frequencies for a frequency

augmentation approach). Any improvement would require a frequency decimation approach, where fre-

quencies are identified as unnecessary and removed from the solution. The problem size reduction was more

substantial for the small thresholds, approaching 90% for the smallest threshold on the finest grid.
The difference between compute times for the adapted and fixed-frequency solutions is shown in Fig. 15,

again in terms of percent reduction. To determine how problem size reduction (Fig. 14) translated into run

time reduction (Fig. 15) with changes in augmentation threshold and grid density, the ratio of compute time

to problem size was calculated.
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At a threshold of 5.0e) 2 the overhead of the adaptation algorithm was significant relative to the

maximum absolute run-time reduction on all grids, resulting in an average ratio (converted to percent) of

47%. For lower thresholds the overhead was less significant, and ratios were higher, averaging 91% for a

threshold of 5.0e) 6, and 95% for a threshold of 5.0e) 7. The adaptive solution on the finest grid with an

augmentation threshold of 5.0e) 7 achieved a ratio of 99% with an 86% reduction in compute time. The
adaptive ratios for all solutions are shown in Fig. 16.

To investigate the potential benefit of applying the adaptive technique to typical problems currently

addressed with non-adaptive harmonic balance approaches, the time-variation of integrated pressure loads

for adapted and non-adapted solutions were compared. Fig. 17 shows loads for non-adapted solutions with

one, three, and five frequencies (typical of current harmonic balance applications) compared to the load for
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the high-fidelity adapted solution with a threshold of 5.0e) 7. All of the constant-frequency solutions

compared favorably, though the 1-frequency solution showed a distinct phase shift relative to the other

solutions. Maximum error ranged from 0.1% for the 1-frequency solution to 0.01% for the 5-frequency

solution. Relative to the adapted solution, the 1, 3, and 5-frequency solutions took 0.37, 0.7, and 1.7 times
as long to compute, respectively. To show the effect of increased Ethresh, the integrated load for the adapted

solution with a threshold of 5.0e) 3 is also plotted. This solution had a maximum error approximately the

same as the 3-frequency non-adapted solution (�0.05%), but took 25% less time to compute.
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6. Conclusions

An adaptive harmonic balance method was presented and applied to an unsteady supersonic/subsonic

diverging nozzle. This problem contained a periodic unsteady flow field with mostly continuous, low-
frequency content flow, but with an isolated shock region with highly nonlinear, high-frequency content

flow.

Adapted harmonic balance solutions were generated for a variety of grid densities and augmentation

thresholds. The energy-based frequency augmentation approach proved effective in matching frequency

content to underlying flow. Regions of the computational domain requiring higher frequency content were

identified, and frequencies were added until augmentation threshold levels were achieved. Given thresholds

produced qualitatively uniform solutions across tested grid densities. At the lowest augmentation thresh-

olds, the adapted harmonic balance solutions showed good agreement with both theoretical and time-
accurate numerical solutions.

The combination of an energy-based frequency augmentation approach, fringe augmentation, and the

split-domain solver proved to be robust and stable. The adaptation algorithm and solution scheme suc-

cessfully handled a rapid transition from steady-state supersonic flow to the highly nonlinear, unsteady,

mixed supersonic/subsonic flow in the region of the moving shock. In all but one case, the maximum stable

CFL of the solver was used for the entire solution.

The adaptive harmonic balance approach effectively reduced the time needed to obtain a high-fidelity

solution with the harmonic balance method. The compute time for solutions with thresholds of 5.0e) 6 and
5.0e) 7 averaged greater than 80% reductions in compute time relative to equivalent non-adapted solu-

tions, on all grids. This reduced the difference in compute time between low-fidelity and high-fidelity so-

lutions so that the highest fidelity solutions ran only 2–2.5 times longer than the lowest-fidelity solutions.

When compared to the observed advantage of low-fidelity harmonic balance solutions over time-accurate

calculations, it is clear that the adaptive harmonic balance method will allow higher-fidelity solutions (when

more than one harmonic is important) at the same or reduced cost, and may be competitive with time-

accurate calculations for some high-fidelity solutions.
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